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The problem of simultaneously approximating a vector of irrational numbers 
with rationals is analyzed in a geometrical setting using notions of dynamical 
systems theory. We discuss here a (vectorial) multidimensional continued- 
fraction algorithm (MCFA) of additive type, the generalized mediant algorithm 
(GMA), and give a geometrical interpretation to it. We calculate the invariant 
measure of the GMA shift as well as its Kolmogorov-Sinai (KS) entropy for 
arbitrary number of irrationals. The KS entropy is related to the growth rate of 
denominators of the Euclidean algorithm. This is the first analytical calculation 
of the growth rate of denominators for any MCFA. 
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1. I N T R O D U C T I O N  

The problem of simultaneously approximating a single irrational or a set 
of irrationals has an illustrious history and given rise to much beautiful 
mathematics.~l 3) For the case of approximating a single irrational, our 
understanding is quite complete. There is a unique algorithm which gives 
"best" approximations to any given irrational. This algorithm is the 
ordinary continued-fraction (OCF) expansion and was discussed by, 
among others, Gauss. The ergodic theory (invariant measure and 
Kolmogoro~Sinai entropy) as well as the growth of denominators is 
completely understood. Its dynamical systems interpretation is due to 
Khintchine. ~6) 

Although there has been a tremendous amount of work on the 
problem, the subject of approximating se t s  of irrationals is much less 
developed. An approximation procedure was given by Jacobi and put on a 
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more rigorous basis by Perron, resulting in the famous Jacobi-Perron ~2~ 
algorithm of which there are many variants. However, all proposed algo- 
rithms suffer various deficiencies. Moreover, a rigorous result states that 
none of these algorithms may possess a / / o f  the approximation properties 
which the OCF does for the approximation of a single irrational (for a nice 
summary see Szekeres ~9) and Lagarias~l~ The field of multidimensional 
continued-fraction algorithms (MCFA) has given rise to a myriad of 
generalized algorithms (F-expansions) ~H) with different meritsJ 14) In sum- 
mary, the bulk of the most interesting questions remain unanswered. The 
foremost question is, does there exist a convenient algorithm that lists the 
entire set of best convergents, and only this set? Or at least an algorithm 
which is able to list a sequence, which contains a subsequence which shares 
a subsequence with the sequence of best convergents? 

There are several goals to this paper. First, we propose and study a 
simple MCFA, the generalized mediant algorithm (GMA). The algorithm 
has a simple geometrical interpretation and has the very pleasant feature 
that its invariant measure and Kolmogorov-Sinai  entropy may be 
explicitly calculated (for any number of irrationals). As is known, finding 
an analytical form for the invariant measure is never guaranteedJ 7) 
Knowing the KS entropy yields the growth rate of denominators via a simple 
relation (see ref. 8, especially the discussion relating to Corollary 7.10) 

"~1 = eh/(l+ 1) 

where I is the number of irrationals to be approximated, )~1 is the eigen- 
value governing the growth rate of denominators, and h is the KS entropy 
for the unique absolutely continuous invariant (ACI) measure. These are 
the first analytical results on the growth rate of denominators for an 
MCFA. 

This work gives explicit closed-form analytical results on convergence 
properties of an MCFA. In future work, we will show how the dynamical 
systems perspective enables us to evaluate a convergence exponent. The 
philosophy of our "program" is to state and approach all the Diophantine 
metric properties completely within a dynamical systems context. 

Section 2 reviews the one-irrational (two-dimensional) case. We dis- 
cuss the geometric aspects of the Farey shift and OCF, and their relation 
to the study of eigenvalues of shear matrices. Expositing the material this 
way helps us develop the results of the GMA algorithm, since the OCF 
case is easier to visualize. The general approach is the same in both cases. 

In Section 3, we proceed to explain the GMA and its geometrical 
interpretation. We state Proposition 2: any triple of integers with greatest 
common factor unity may be written as a sum of the rows of a suitable 
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product of elementary matrices. The GMA provides one way of carrying 
this procedure out. It is analogous to the Farey shift geometrically, since 
the geometrical rule for both algorithms is "move vertices to mediants" 
(hence the name, generalized mediant algorithm). For the GMA, we give 
the relation between products of elementary shear matrices and the GMA 
shift map. The associated shift map is characterized in the following 
fashion: (i) the support of its invariant measure 6 e is given by the ordered 
unit hypercube, with the additional restriction that the sum of the two 
smallest irrationals is larger than unity, i.e., 

z > . . . > b > a > l - b  (1.1) 

where a, b are the smallest and next to smallest irrationals, respectively, 
and z represents the greatest irrational. (ii) The GMA shift is a two-to-one 
map on 5 f (the inverse image of almost all points of 5P contains two 
points). 

In Section 4, we discuss the relation between the eigenvalues of the 
shift map and the eigenvalues of the corresponding string of products of 
elementary matrices (which we term the E-string). Let 21 be the ("average") 
eigenvalue of the E-string lying outside the unit circle and let {~.i}i=2...., d be 
the set of d -  1 = I other eigenvalues (all lying within the unit circle). Then 
the eigenvalues of the shift are given by {21/2a_s+2} s-2"'a. In order to 
formulate properly the notion of eigenvalues for dynamical systems, we 
must also introduce in this section the positive, real, Oseledec eigenvalues. 

In Section 5, we determine an equation for the invariant density of the 
shift. With the invariant measure in hand and knowing the relation of 
Section 4, we are able to study the KS entropy, and hence the growth rate 
of denominators. We give an analytical expression for and plot the KS 
entropy as a general function of dimension. Also, we analyze analytically 
the behavior as I (the number of irrationals) approaches 1 or grows large. 
The KS entropy is easily related to the largest eigenvalue of the E-string 
as stated above. Section 6 is a discussion and conclusion. Proofs for 
statements in Section 3 are given in Appendices A and B, whereas proofs 
for Section 4 are given in Appendix C. For convenience, a glossary is 
appended. 

The question of approximating sets of numbers is in itself of 
fundamental importance. Let us point out very briefly, though, why the 
question may be important for someone interested in the field of 
Hamiltonian systems, for example. For over 9 years, (16) researchers have 
tried to understand questions regarding the breaking of KAM tori in 
3-degree-of-freedom systems, without success. In 2-degree-of-freedom 
systems one sees a magnificent relation between stability (robustness) and 
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the Diophantine properties of the winding numbers (in dissipative systems: 
Arnold tongues). ~12~ These Diophantine properties are understood via 
continued-fraction expansions and the Farey shift. (13) It seems likely that 
understanding the metric properties of sets of irrationals may help in 
understanding analyticity breaking in higher-degree-of-freedom systems. 

This paper is the first of two papers discussing MCFAs. In this first 
paper, we give an algorithm with positive entropy implying an exponential 
growth rate of the denominators of the rational approximants given by 
the algorithm. The second paper determines an important convergence 
exponent for MCFAs for the case of two irrationals for several different 
algorithms. Employing a dynamical systems viewpoint, we express this 
exponent in terms of the Lyapunov exponents of the shift. Algorithms 
with best approximation properties must have a certain value for this 
convergence exponent. In particular, this straightforward analysis shows 
numerically that neither JP nor the GMA algorithm find best Diophantine 
approximations for almost all reals. 

2. A P P R O X I M A T I O N  OF T W O - D I M E N S I O N A L  VECTORS 
(OCF) 

In this section, we review some geometrical and statistical properties 
of the Farey shift (FS) and the ordinary continued fraction (OCF). We 
present these well-known results since they lead naturally to the GMA. 
Moreover the results are presented in such a manner as to reflect our 
dynamical systems philosophy to MCFAs. 

We begin our exposition with a definition followed by a well-known 
result. 

for 

Def ini t ion 1. Elementary matrices. Define the matrices E ~d) by 

(E~a))kl = 5,l+ 6ik6jl (2.1) 

l<~i,j,k,l<~d and i # j  (2.2) 

We call the E 0 elementary matrices. 

We will suppress the superscript d when the dimension of the space is 
evident. The E,~ have unit entries on the main diagonal with also exactly 
one off-diagonal unit entry (in the 0'th place). In the case n = 2, E12 [~ = I1 ,  lo]. 
E21 = [ t 
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Propos i t ion  1 (ref. 5, Chapter3).  Any relatively prime pair of 
integers (M, N) may be uniquely represented as a sum of the columns of 
the following matrix: 

K = [  -M'  N~ 1 
_Mr Nr 

where the matrix K is written as the product of a string of (E0), beginning 
with E~2 (i.e., the rightmost member of the matrix product). We call this 
decomposition into elementary matrices the E-string. 

The proposition has an elegant geometrical interpretation discussed by 
Minkowski (see Fig. 1 and ref. 5, Chapter 3). We wish to approximate a 
certain irrational number which is equal to the slope of a ray (not drawn 
in Fig. 1) from the origin. Consider a parallelogram formed by the origin, 
two vertices (M~, N~), (Mr, Nr), as well as that vertex which we shall call 
the focus (M,N) (=-Mr+Mr, Nt+Nr). We can thus identify the 
parallelogram with a matrix by writing 

(M~, Nl) 

I2 

Ii 

O (M~,N,) 

Fig. 1. A converging simplex in two dimensions. (9 labels the origin, and (M/, N/) and 
(Mr, Nr) the left and right vertexes of the initial parallelogram. The point f0 = (Mr+ Mr, 
Nl+ Nr) is the initial focus. Three shears have been applied to this original parallelogram. 
Each shear leaves the origin fixed, but moves (Mr, Nt), (Mr, Nr) to new values. We have 
labeled the new position of the focus after each shear by fi. 
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as done in Proposition 1. The parallelogram is updated by applying one of 
the matrices (Eu) to K, and reading off the new coordinates from the newly 
formed matrix. The update is done such that the ray always pierces one of 
the sides of the parallelogram. There is always a unique way to do this, if 
the slope of the line is irrational. In this way the coordinates of the focus 
(when written as a fraction) form rational approximants to the irrational 
slope of the ray. 

For example, consider the unit square which is one of the regions 
depicted in Fig. 1. Three elementary shears have been performed, and the 
original parallelogram (the square) has been sheared into the most 
elongated parallelogram in the figure (whose final focus is given by f3). 
Subsequent shears continued to stretch (shear) the parallelogram. The 
entire history of shears is recorded in the E-string whose product is the 
matrix K of Proposition 1. Since the matrix K is built up from a product 
of elementary matrices, the absolute value of the determinant of this matrix 
is unity, implying that the area inside the parallelogram is unity. The eigen- 
values of the matrix K only change when there is a switch in the application 
of E12 to E21 (or vice versa). 

There is a relation between this sequence of application of shear 
matrices and a mapping of the unit interval into itself. We will make this 
correspondence clear by way of examples. 

2.1. The Farey Shi f t  

If we watch a progression of the foci as the label n of Proposition 1 
runs from larger values to smaller values, we note the following behavior 
(for A < B): 

(A, B ) ~  (A', B')= (A, B - A )  

that is, we subtract the smaller from the larger. We call this procedure the 
Euclidean algorithm. 

Suppose we wish to analyze the map induced on x=min(A, B)/ 
max(A, B) by the above procedure. Defining x' = min(A', B')/max(A',  B'), 
we find that x' may be expressed in terms of x: 

x ' =  r (x )  

= ~'To(x ) , 0<x~< 1/2 (2.3) 
[Tl (x) ,  1 / 2 < x <  1 

where we have defined two elementary shift operations: 

x 1 - x  
To(x) = - - ;  Tl(x)  - (2.4) 

1 - - x  x 
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Each shift function is continuous on the open unit interval. The function 
To(X) maps the closed interval [0, 1/2] to the closed unit interval, whereas 
Tl(x) maps [1/2, 1] to the closed unit interval. The function F(x) is thus 
a tentlike two-to-one function on the unit interval with maximum at 1/2. 
We call F(x) the associated shift of the Farey Euclidean algorithm. The shift 
we define in (2.3) is the Farey shift. 

We give a specific example of the relation between the E-string and the 
Farey shift in Fig. 2. Reading downward from the top, we see that if we 
subtract one entry from the other such that the formerly larger entry 
becomes smaller, then this corresponds to an application of T,(x) and the 
matrix type of the E-string is changed. Otherwise F(x) corresponds to 
To(x) and the elementary matrix of the E-string remains unchanged. To 
demonstrate Proposition 1, we write 

~2 g12E~2= 12 ~12 "21 

The sum of the columns is given by (37,225), the fraction to be 
approximated. Thus, the expansion by the Farey shift To, T~ of any irra- 
tional corresponds to a Euclidean algorithm with a nice geometrical inter- 
pretation. Observe that by keeping track of the sequence of the Ti which 
we employed in reducing the irrational with the larger denominator, we 
can invert the procedure and recover the irrational. 

There are of course many advantages to studying a shift map on the 
unit interval rather than a Euclidean algorithm or the ergodic theory of a 
matrix group. For example, one may calculate the ergodic properties such 
as invariant measure, and the Lyapunov spectrum. 

! +  l Example 1. ~ = ~ ~ + 

M N F(z)  E-string 
37 225 E12 

To 
37 188 E12 
37 151 To EI~ 
37 114 To E12 

To E~2 
37 77 To E12 
37 40 TI 
37 3 E2] 
34 3 I To Em 
31 3 [ To E2~ 
4 z Tg z~, 

T~ 
1 3 E12 

To El2 1 2 To 
1 1 [ E12 

Fig. 2. An example of OCF:  reduction of matr ix pair (37, 225). 
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2.2. Farey Shift- -Statist ical  Properties 

We define the invariant measure (19~ of the shift map as 

d#(x) = d#(F-1(x)) 

and the invariant density as 
d#(x) 

p ( x ) =  dx 

(2.5) 

(2.6) 

The invariant density for an absolutely continuous 
should satisfy 

which reduces to 

invariant measure 

dz 
p ( x ) =  ~ p(z)--~x (2.7) 

T ( z )  = x 

1 2 X 

for the Farey map. There is a continuous measure on the open unit interval 
satisfying Eq. (2.8) given by 

p(x) = 1/x (2.9) 

Although this density cannot be normalized, it can be used to find relative 
densities on the open interval. 

The KS entropy for a one-dimensional map is given by 

h = f d# In IJI (2.10) 

where J is the Jacobian of the map given by J ( x )  = dT(x)/dx. For the Farey 
shift, it is easy to show that the entropy of the Farey shift is zero, using a 
regularization procedure. Thus the growth of the denominators for the 
Farey shift is, on the average, subexponential. In fact, 

In n.ln(denominators of Farey shift) ~2 
lim - (2.11 ) 

, ~  n 12 

2.3. Ordinary Continued-Fraction Shift 

The ordinary-continued fraction Euclidean algorithm is given by (for 
A < B )  

(A, B)--* (A', B ' ) =  (A, B-- [B/A]A) 
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where [o] is the Gauss integer symbol meaning the largest integer smaller 
than ~ Thus we subtract the smaller integer from the larger enough times 
until it is no longer the larger of the two integers. The two integers never 
become equal because by supposition they are relatively prime. 

The map induced on x = min(A, B)/max(A, B) by the above procedure 
is 

(2.12) 

The ordinary continued-fraction map demonstrates all the best approxima- 
tion properties. We refer the reader to Lagarias (1~ and Brentjes. (14) Note 
that the OCF can be expressed in terms of the same primitive operators 
To, T1 as the Farey shift: 

rocAX) = r l  r o  E~/~- '(x) (2.13) 

Equation (2.13) may be checked by direct substitution using (2.4) and 
(2.12). The appearance of T1 in the string signals the switch in the matrix 
type and thus the growth of the eigenvalue of the E-string. From these sim- 
ple considerations it is clear that the continued fraction map has positive 
entropy. We proceed to show this by direct calculation. 

2.4.  O C F - - S t a t i s t i e a l  P r o p e r t i e s  

For the OCF, the equation for the invariant density reads 

p(y) = p 
k = l  

with a properly normalized solution given by 

(2.14) 

1 1 
p(y) (2.15) 

l n 2 1 + y  

The result for the entropy is given by 

hocv = ~ dl~ In J 
d 

(2.16) 

~2 

2.37 (2.18) 
61n 2 

1 f~ dx ln~52 (2.17) 
= l n 2  
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and the denominators grow like 

In(denominators of OCF) ~= 
lim (2.19) 

n ~  n 121n 2 

For a thorough discussion see Khintchine. (6) 
The dynamical systems approach we will employ throughout our dis- 

cussion of continued fractions is not the usual number-theoretic approach 
to Diophantine properties. Moreover, this approach naturally suggests the 
GMA, which we construct in the next section from geometric considera- 
tions. 

3. A P P R O X I M A T I O N  OF H I G H E R - D I M E N S I O N A L  VECTORS 
( G M A )  

The following proposition paves the way for the GMA for three 
dimensions. We treat the d =  3 and d >  3 cases separately in this section, 
since the general dimensional algorithm is most easily made clear geometri- 
cally by its d =  3 version, which fortunately we may readily visualize. A 
reader not interested in the full set of technical details contained in this 
section should glean the following, before moving to the next section. The 
GMA algorithm for a set of d integers is the process of subtracting 
the smallest element from the largest, with additional rules in case of ties. 
The associated (d-1)-dimensional  shift is given by Eqs. (3.5)-(3.9) or 
(3.10)-(3.14). 

We proceed now to a full exposition of GMA. The following is a 
proposition similar to Proposition 1. 

P r o p o s i t i o n  2. Any integer triplet (P1,P2, P3) with greatest 
common factor unity and 

PI+P=>~P3; PI<~P2<~P3 (3.1) 

may be represented as a sum of the columns of a matrix K, which may be 
written as the product of a string of Ei/K--1-I,  Ei.j. The product is 
ordered in the following way: 

K . . . .  Ei2j2 Ei l j l  E~ojo 

Remark 1. The proposition may be straightforwardly stated in any 
dimension. The d integers with greatest common factor unity are ordered 
1 <~P1 <~P2 <~''" < Pd. The sum of the smallest two integers must be 
greater than or equal to the greatest integer, PI + P2 >1 Pd. 
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The GMA, described below, provides precisely one route to the matrix 
of the type described in Proposition 2 (see below). 

Consider the points given by the origin, and the three lattice points 
each given by an integer triplet (L i, Mi, Ni); i = 1, 2, 3. We call these three 
points the vertices. Consider also the three lattice points given by the 
mediants of the vertices [i.e., (Li+ Lj, Mi+ Mj, N~+ Nj); i ~ j ] .  We 
call these points the mediants (for short, we write Mij for mediants). 
These 1 + 3 + 3 = 7 lattice points, along with the focus (LI + L 2 + L3, 
M1 + M2 + M3, N~ + N2 + N3), from the 8 corners of a parallelepiped. By 
designating the three vertices ( L ,  M~, Nz), then, one may construct this 
parallelepiped in a unique way. According to Proposition 2, there is at least 
one prescription for reconstructing any given focus under the restrictions 
(3.1). Moreover, the process of reconstructing any given focus may be 
viewed as a dynamical system, where the dynamics is that of the motion of 
one focus to another. 

Consider a direction given by a unit vector (a, b, 1)/(1 +aZ+b2) 1/2 
with a, b irrational. The GMA is a particular prescription for moving one 
of two vertices to a particular mediant in such a manner that the ray from 
the origin stays within the new parallelepiped constructed from the new 
vertices. (There are other "simplex-splitting" algorithms also.) 

Dof in i t i on  2. Generalized mediant algorithm (GMA), d = 3 .  Con- 
sider an integer triplet (P1, P2, P3) satisfying the assumptions of Proposi- 
tion 2: PI ~< P2 ~< P3; P1 + P2/> P3. The algorithm may be described as 
follows: 

1. We use a superscript to number iterates of the GMA procedure. 
Define 

(p]O), pT), p?)) = (P1, P2, P3) 

Also define 

i_1= 1, j _ 1 = 2  

This is convenient so that rule 2 which follows holds for all n/> 0. 

2. Define Jn to be the label which is not a member of the set of the 
two elements {i,_ 1, J ,  1}" Define i, to be the label such that p!,)<,, ppt,) for 
all p r i,. That is, i, labels the smallest element of the set of the three 
integers for the nth iterate of GMA. If there is no uniquely smallest integer, 
define i, = i ,_ 1. Now let 

+ ,), + 1), p ( ;  + , ) ) =  P( ; ) ,  . 
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The procedure subtracts the smallest (i,) from the largest (Jn) entry 
--1 and records the position of the two entries (as Ei, j~ ). In the case of ties, 

additional rules are provided. 

3. Repeat this procedure until the triplet is reduced to (1, 1, 1 )=  
(p~U), p(U), p(U)). 

Remark  2. The GMA provides the existence of a matrix K of 
Proposition 2: 

K = EiN_IJN_I" EiN_2JN_2"'" [ i l J l  " Ei0J0 

An example is provided in Fig. 3a. The triplet (7, 22, 23) is reduced via 
the GMA. One always subtracts a smallest from a largest entry. The matrix 
K of Proposition 2 is constructed as specified: 

K(7,22,23) = [:13 1:12(E31 1::32) 3 1::13(1::12 1=13) 2 

Ei = 1 

9 10]  

(3.2) 

(3.3) 

The sum of the columns of K now gives the desired result (7, 22, 23). The 
rows of the matrix of Eq. (3.3) are the vertices of the parallelogram which 
has (7, 22, 23) as its focus. A proof of the statements of Proposition 2 and 
Definition 2 is given in Appendix A. No subtle points appear in the rather 
tedious proofs. 

Example 2. 

A B C F(x) E-string 
7 22 23 E~3 

To 
7 22 16 E12 

To El3 7 15 161 To 
7 15 9 E12 

To 
7 8 9 E13 
7 8 2 Tl E32 

To 
7 6 2 E31 
5 6 2 To E32 

To 
5 4 2 E31 

To 
3 4 2 Es2 

To 
3 2 2 Ea 

TI 
1 2 2 El2 

To 
1 1 2 EI~ 

To 
1 ] 1 

Fig. 3. An example of GMA: reduction of triplet (7, 22, 23). 



Mult idimensional  Continued Fraction 1475 

We give a geometric picture of the algorithm. Consider once again the 
initial parallelepiped as described below Proposition 2 and a unit vector 
given by (a, b, 1)/(1 +a2+b2) 1/2. At each application of the GMA, only 
one of the faces is pierced by the ray generated by the unit vector. Every 
face that is pierced contains a single vertex at a corner. Suppose this corner 
is Vj. Then (a)Eij m e a n s  move Vi to Mij and (b)Ek; means move V k to 
Mkj. The correct choice is given by the criterion that either in the (a) case, 
Vk is the new corner vertex, or in the (b) case, Vi is the new corner vertex. 
Cases (a) and (b) cannot both be satisfied such that the sum of the two 
smallest integers of the focus is larger than the third. 

In the 2d case of the Farey shift, we saw that associated to the E-string 
and a Euclidean algorithm there is a shift map, e.g., the Farey shift. Exactly 
the same method may be used to construct a shift map for the GMA. The 
reduction of the focus (as in the above example) is given by ( L <  M<N) 

(L, M, N) ~ (L', M',  N')  = (L, M, N -  L) 

that is, we subtract the smallest from the largest. This Euclidean algorithm 
is in some sense the generalization of the Farey Euclidean algorithm (see 
Section 2). Suppose we reorder the matrix after each subraction. Consider 
the ordered version of the (L, M, N) above: (A, B, C). The associated 
GMA shift maps (A/C, B/C) to (A'/C', B'/C'). 

Defini t ion 3. GMA shift (d=  3). Consider the set c j  defined by 

Define for (x, y) s 5 e 

~ =  {(x, y ) l O <  1 - y < ~ x < ~ y <  1} 

r0(x, y ) =  , 

T~(x, Y)=( 1-xy ,y) 

The GMA shift is defined as 

(3.4) 

(3.5) 

(3.6) 

TGMA(X,y)=To(x,y) for 0<x~< 1/2 (3.7) 

= Tl(x, y) for 1/2 < x < 1 (3.8) 

In Fig. 4, we have drawn the invariant set 50. On the left (Fig. 4a), we have 
drawn the set 0 ~< 1 - y ~< x ~ y and divided it into two regions, x ~< 1/2 and 
x >~ 1/2, with equal area. We have also labeled five line segments in the 
diagram which delimit the boundaries of each piece. On the right, we have 

822/66/5-6-19 
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(0, 1) c d (1, 1) (0,1) b, e / (1,1) 

Fig. 4. 

(a) (b) 

The invariant set of the GMA shift for two irrationals. (a) The set 5 ~ is mapped two 
to one to itself. (b) See the discussion below Definition 3. 

iterated the set 5 ~ and shown where each of the line segments from Fig. 4a 
are mapped to. For  example, the line segment c connects the two points 
(0, 1) and (1/2, 1). It is mapped to the line segment joining (0, 1) and 
(1/2, 1/2). 

The extension of these procedures for dimensions higher than 3 is 
straightforward. 

D e f i n i t i o n  4. G M A  Procedure, d > 3 .  Given a d-integer multiplet 
of positive integers (PI ,  P2 ..... Pa) satisfying the assumptions of Remark 1: 
PI <~ "'" <~Pa; P~ +P2>>'Pa �9 

1. Again we use superscripts to number iterates of the GMA proce- 
dure. Define 

p~O)=pj for l<<_j<~d 

Also define 

i _ t=  1, j _ ~ = / +  1 for l < ~ l < ~ d - 2  

2. Define j ,  to be the label which is not a member of the set of 
elements {i,_z, j ,  /} 1~ t~ a-2 Define i, to be the label such that P ! ' ) <  PI ") 

�9 tn  

for all l # i,. That is, i, labels the smallest element of the set of integers for 
the nth iterate of GMA. If there is no uniquely smallest integer, define 
i , = i ,  1. N o w l e t  

(p~,,+ l) ..., p(a,+,))= (p~,),..., p(d,)) . E i~  
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The procedure subtracts a smallest (labeled by in) from a largest 
(labeled by j,,) entry and records the position of the two entries in the 
E-string. 

3. Repeat this procedure until the triplet is reduced to (1,..., 1 )=  

The straightforward proofs for the above statements may be found in 
Appendix B. 

As for the d =  3 case, there exists an associated shift. 

D e f i n i t i o n  5. G M A  shift (d>  3). Define the set 

5 P = { ( a , b , c  ..... z)[O<l-b<<,a<~b<<,c<~ . . . z < l }  (3.9) 

for I irrationals. Define 

 o,o, = , , 10, 

The GMA shift is defined as 

T~MA(a,...)= To(a,...) for 0<a~< 1/2, (3.12) 

= Tl(a,...) for 1/2<a~< 1 (3.13) 

What is the geometrical picture for dimension greater than 3? A 
generalized parallelepiped in d dimensions must have 2 d vertices (e.g., for 
d =  2, we have 2 2 = 4). For d = 4 with 4 vertices we may define 4.3/1 - 2 = 6 
mediants, precisely as before. We must, however, define also 
4- 3 - 2/1 �9 2 .3  = 4 mediants2 as the sum of any three vertices. The focus, as 
before, will be the sum of all 4 vertices. Including the origin, vertices, 
mediants, mediants2, and focus, we have a total of 1 + 4 + 6 + 4 + 1 = 16 = 
2 4 points, enough to define a generalized parallelepiped. In d dimensions, 
there will be one focus, d vertices, [~] mediants,..., [ d~ l ]  mediantsd-l ,  
yielding Zjd=o [~] = 2d corners of a parallelepiped. The GMA moves a 
vertex to a mediant and reconstructs the parallelepiped by the above 
procedure. The rule for the vertex move reads precisely the same as the 
three-dimensional case (see below Remark 2). 

4. RELATION B E T W E E N  E I G E N V A L U E S  OF E-STRING 
A N D  G M A  S H I F T  

In this section we relate the eigenvalues of the E-string to the eigen- 
values of the G M A  shift. What we would like to claim is that if we start 



1478 Baldwin 

with an initial multiplet of d arbitrarily large integers, then the eigenvalues 
of the GMA Euclidean algorithm satisfy a simple relation to the eigen- 
values of the GMA shift [-see (4.23)-(4.25)]. This is a property common to 
different simplex splitting algorithms of which the GMA is an example. 

Suppose we have a triplet d = 3  of integers (N~ ~ N (~ N~3 ~ with 
N1 < N2 < N3; N1 + N2/> N3, which is reduced to another triplet of integers 
(R~ L), R(~ ), R~ L)) after L steps of the GMA: 

(R~ L), R(: c), R~ L)) = (N~ ~ N (~ N~ ~ Eio~--- E~I]L ~ (4.1) 

(N~ ~ N(z ~ N <~ ) = 3 KL -1 (4.2) 

Let us call (N~ L), N(~ ), N~ L)) the ordered version of (R~ L), R(2 L), R~L)), 
so that ~e(L)_< at(L).< ~(L) Then we can rewrite (4.2) in the following way: ~ 1 - - . ~ v  2 . ~ x ,  3 " 

FNr'l 
: / (4.3) 

SL=Perm(K[1 )  T, Perm is some permutation matrix, the super- 
T denotes the matrix transpose, and K/~ is the E-string KL= 

Here 
script 

E i L - l J L  1 " ' "  EioJo" 
Let us examine what behavior is induced on the shift. We define 

N~ ~ N(2 ~ N]L' N(2 L) 
Xo = N(~), Yo = N(3O), XL -- N~L), YL -- N~L) (4.4) 

Now xL, YL are simply the Lth iterates of the GMA shift on Xo, Yo. So we 
can define 

(XL, YL) = T~MA(Xo, Y0) =- T~MA . . . . .  TaMA(X0, Y0) (4.5) 

Thus we may also define the following matrix: 

= F 8xL/Sx~ 8XL/@~ (4.6) 
TL [_ayL/aXo 8yL/ayo_] 

Clearly 

TL = TL, L_ 1To_ 1,5-2"" T1,0 (4.7) 

where T j ,  j _  1 is the Jacobian of the mapping from (xj 1, Yj 1 )  to (xj, yj): 

Tj: I=F 8x;/8x;-1 8x; /~  (4.8) 
" -  I~y /~x j_ l  ~yL/~yj-II 
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We would like to define "average eigenvalues" for the Euclidean 
algorithm and shift. Unfortunately, eigenvalues of SL, TL may be complex 
or negative, so that taking the Lth roots of SL, TL may be an ill-defined 
procedure. The idea carried through by Oseledec (2~ is to multiply SL, TL 
by their transposes to get positive, real, symmetric matrices. From those 
matrices one may define square roots, etc., in a unique way to arrive at new 
positive, real, symmetric matrices. Thus one defines 

S = lim ~ r q  ]I/2L (4.9) 
I ',,~ L ~-,' L I 

L ~ o o  

T -  lim (TTTL) mL (4.10) 
L ~ o o  

One also defines 

E_=S 1 (4.11) 

= lim (K~KL) 1/2L (4.12) 
L ~ o o  

= lim (Eri0J0..- ET IJL ~EiL LSL ~ " "  EioJo) U2L (4.13) 
L ~ o o  

In deriving (4.12), we have used the definition of the matrix SL = 
Perm(KL1) T, and the fact that permutation matrices are orthogonal 
P e r m  T P e r m  = I. 

Because the shift map is ergodic and satisfies the other criterion of the 
Oseledec theorem, (2~ we should expect that the eigenvalues of E and T 
(with probability one) do not depend on which set of irrationals are being 
approximated. That is, the set of real mukiplets which are exceptions have 
measure zero relative to the absolutely continuous invariant measure 
(which we calculate in Section 5). Thus, it is meaningful to discuss these 
matrices without reference to any particular starting vectors. 

The eigenvalues of E describe the dynamics of the parallelogram as it 
is sheared along some "irrational" vector as we described earlier. By the 
way GMA is defined we expect that there should be one eigenvalue greater 
than unity describing the stretching of the parallelogram, with all the other 
eigenvalues less than unity describing the contraction. The parallelogram 
becomes long and thin (as in Fig. 1 for the 2d case). The eigenvalues of T, 
on the other hand, describe the expansive nature of the shift map and so 
we expect that all of these eigenvalues should be larger than unity (just as 
the OCF shift is expansive). The question we address is: how are the eigen- 
values of E, the E-string, related to the eigenvalues of T, the shift? 

What we find is that if 21 > 1 > 2 2 ~ 1~3 are the eigenvalues of E, the 
eigenvalues of T are given by 

O"1 = 1~1/~'3, O ' 2 = 2 1 / 2 2 ,  0"1 >~0"2> 1 (4.14) 
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Equations (4.14) are very important if one wishes to calculate the 
entropy. The result tells us that the eigenvalues of the shift are all indeed 
greater than one and that all the Lyapunov exponents are positive. The 
entropy of the shift is then simply the sum of the positive exponents, which 
is in turn the sum of all the exponents: 

h = In al + In o 2 (4.15) 

(note that al is an eigenvalue, In al is an exponent). Thus we calculate, 
using (4.14) and (4.15), 

21 21 2~ 2 3 
h = In ~ + In ~ = In 2 ~  = In --212z)~3"~ = In 2 ~ = 3 in 21 (4.16) 

In the above equation we have used 

This holds because 

2 1 2 2 2 3  = 1 (4.17) 

L L 

(det E)L= 1-I (det Eikjk ) = H 1 = 1 (4.18) 
k = O  k = 0  

det E = 1 (4.19) 

Thus, since each Eikjk has determinant one, then I: also has unit determi- 
nant, and the product of the eigenvalues is also unity. 

Also from (4.15) 

1 1 L 
h=ln(ala2)=lndetT=c~Ll im - l n d e t Y L = l i m  ~ 2 lndetTj j ,  1 

j= 1 (4.20) 

Using the Birkhoff theorem, we see that if we can calculate the absolutely 
continuous invariant measure, then we can calculate the entropy analyti- 
cally: Eq. (4.20) converges to an integral, which we can perform over the 
phase space, 

= f d#(x) In det d(x) (4.21) h 

where d is the Jacobian. Combining (4.16) and (4.21) gives an expression 
for the largest eigenvalue of the Euclidean algorithm in terms of an 
integral: 

1 (.  

In 21 = ~ J d#(x) In det d(x) (4.22) 
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If the shift map had some negative exponents and some positive exponents, 
then one could never proceed through an argument like (4.20) to arrive at 
an expression for the entropy in terms of an integral over phase space. So 
to give an expression for the eigenvalues of the shift as in (4.14), showing 
that they are all greater than one, is very important. 

G e ne r a l  D i m e n s i o n s .  The above discussion is similar for any 
dimension. 

Theorem 1. If 

21> 1 >22>~ ..- >~zd (4.23) 

21 .. .  2d= 1 (4.24) 

are the eigenvalues of E, then the eigenvalues of T, the shift, are given by 

o r  

(71 ~- 21 /~d '  (72 = 21/')~d- 1 ' " "  (Td-- 1 = 2 1 / ~ 2  (4.25) 

This yields for the entropy 

~ - ~  , t l  ~.1 ~ ~ ~~ 
h =  ~ l n - - = l n - - = I n  't------!---~ l n 2 ~ = d l n 2 1  (4.26) 

j = l  ~'d-- j+2 2 d ' ' ' 2 2  )Ld''')~l 

l L 
h = In det T = lim 1 In det TL = ~ lim In det Tj, j_  1 (4.27) 

Again we have arrived at a relation for 21, the growth rate of the 
denominators, in terms of the entropy h, (8) via Eq. (4.26): 

21 = e hid (4.28) 

where h can be evaluated from converting Eq. (4.27) to an integral using 
the Birkhoff theorem, 

= ~ dp(x )  In det J(x) (4.29) h 
d 

It is Eq. (4.29) that we will evaluate in the next section. Combining (4.26) 
and (4.29) yields 

In 21 = 1_ ~ dl~(x) In det J ( x )  (4.30) 
d J 

More detailed arguments for the above statements are given in 
Appendix C, where the relation (4.25) is derived from (4.23). In order to 
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implement the proofs of Appendix C, we need to assume (4.23), that there 
is a single eigenvalue 21 strictly greater than all the others. The way that 
GMA is constructed, it is clear that this should be so, as we have already 
discussed in this section. Moreover, numerical calculations (23) convincingly 
support (4.23). Strictly speaking, however, we have provided no analytical 
proof that (4.23) holds. The author believes that no such proof exists for 
(4.23) for any MCFA and that numerical proofs may be needed. 

The proofs in Appendix C pertain to a class of continued-fraction 
algorithms, and so one hopes are of general interest. They should be 
interesting to a wide audience in the field of MCFAs. For this paper we 
shall focus on particular characteristics of the GMA. 

5. STATISTICAL PROPERTIES 

In Section 3, we introduced the GMA algorithm and the GMA shift. 
The results of Section 4 related the eigenvalues of the GMA shift to the 
eigenvalues of the E-string. Due to the way the E-string of the GMA shift 
is constructed, it was clear that all the eigenvalues of the E-string but one 
lie inside the unit circle. Due to the relation (4.25), then, we know that all 
the eigenvalues of the shift lie outside the unit circle. This allows us simply 
to find the KS entropy by taking the determinant of the Jacobian of 
the map as in (4.29). Remarkably, we are able to express the entropy of 
the shift as a single integral for the approximation of any number of 
irrationals L 

5.1. Invar iant  Measure for G M A  Shif t  in 
Dimension I>3 

Three-Dimensional  Case. From Eqs. (3.5)-(3.9), we note that 
after one application of ToMA on a point (x, y ) e  5P we have 

x ' + y ' = l ~ > l  and x'<~y'<l (5.1) 
Y 

Thus, ToMA is a mapping of 5 e to itself. For d = 3, the mapping restricted 
to the invariant set 5 ~ reads 

y',-- l_x) 
(5.2) 
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The invariant density p(x)=d#(x)/dx satisfies the Perron-Frobenius 
equation: 

where 

p(x, y) = ~ p(r, s) Idet J(r, six, Y)I 
T(r , s )  = (x ,  y )  

(5.3) 

Or 0s c~r ~s 
det J(r, s l x, y) - gx Oy gy (?x (5.4) 

which yields the following equation for the invariant measure on ~ :  

, ( (~  1) (x 1)) 
- -  + p  y ,  (5.5) P ( x ' Y ) = ( x + y ) 3  P x + y ' x + y  x+  x+ 

This has as a solution 

1 1 
p(x, y) (5.6) 

norm xy 

This is solved by 

, ( ( a t  y l )  
p(a ..... Y'Z)-(a+b)r+~ P - - ~ ' a + b  ..... a + b ' a + b  

(b  c y ,)) 
+P a + b ' a + b ' " "  b' a+ a+b 

1 
p(a, b,..., y, z ) = - -  (5.10) 

ab . . . y z  

(5.9) 

depending on the relative 
Eq. (5.4) reads 

General Dimensions. The solution for higher numbers of irrationals 
is very much the same. The invariant set 60 is defined by 

l>~z>~y>>.... >~b>~a>~l-b (5.7) 

for the I =  d -  1 irrationals (a, b,..., z). On the invariant set the map reads 

! ! ! _ 

(a ' ,b ' , c ,d  ..... y , z ' ) =  z ' z  z ' " " z ' z /  

or(1-,,a~c,,~,,~ ~ 
z z z z z)  

magnitude of a and 1 -  a. The analogue of 
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as can be easily verified. The invariant measure is then given by 

1 da dz 
d,u(a, b ..... y, z) (5.11) 

norm(l) a z 

where "norm" is the normalization and the integration region is given by 
(5.7), 

f,~& dz 
norm(I) . . . . .  

a z 
(5.12) 

We will consider the normalization of the invariant density below. 

Normalization. We consider the case of I irrationals. The last I - 2  
of the integrals over the integration region ~ [Eq. (5.7)] are trivial to 
perform, yielding for the normalization 

norm(I) fdadb  [In(I/b)] 1-2 
a b (1 -2) !  ' 1 - b < a < b < l  (5.13) 

Next the a integral is performed and the substitution b = 1/(1 + b') is made, 
yielding 

f j  db' [ln(1 + b ' ) ]  ' -2  1 
norm(I) = 1 + b' ( I -  2)! In ~ (5.14) 

An integration by parts yields 

;~db ' [ln(1 + b ' ) ]  1 ' 
norm(l) = b' ( I -  1)! (5.15) 

The formula for the measure given by (5.11) is now complete. 

5.2. K O L M O G O R O V - S I N A I  E N T R O P Y  OF THE G M A S H I F T  

The Kolmogorov-Sinai entropy may be heuristically interpreted as the 
loss in information per iteration of the map. The following formula is exact 
under certain technical restrictions of the map(18): 

h = f dp In det J+ (5.16) 

where J+ is the Jacobian of the expanding subspace of the map. In 
Section 4, we concluded that all the eigenvalues of the shift map lay outside 
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the unit circle. Thus we may equate J+ = J. Remarkably, we may explicitly 
evaluate the entropy analytically. This is one pleasant feature of this map. 

Jacobian.  Here we find the Jacobian for the mapping given by 
Eq. (5.8). Note in (5.8) that only one primed variable is dependent on 
b, c ..... y, etc. This observation allows us to write 

e(a', b'_, c',..., y', z') 
J =  3(a, b, c,..., y, z) 

~c' ~?z' c3(a', b') 1 0(a', b') 
- (5.17) 

From this we can directly calculate 

J ~ _ - -  
1 

zZ+X (5.18) 

where I is the number of irrationals. 

Entropy. With the formula for the Jacobian (5.17) and the formula 
for the measure (5.11) and (5.12) we can calculate the entropy: 

h = f l n  l J! d/~ 

f 
s I 

= ( I + 1 )  l n - d #  (5.19) 
Z 

with the integration region given by (5.7). The integrals are performed in 
exactly the same order as in as the last subsection. Considering Eqs. (5.11), 
(5.12), and (5.19), it follows that 

n o rm( /+  1 ) 
h(I)= ( I +  1)- 

norm(/) 

(I + 1) G(I) 
- (5.20) 

(I) a ( l -  I) 

where 
~ d s  

G(I)= - -  [ l n ( l + s ) ] '  (5.21) 
S 

The I--. 1 Limit.  It is interesting to consider noninteger values of 
the RHS of (5.20). In that vein, we show 

lim eG(e)= 1 (5.22) 
e ~ O  
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By definition, 

Here 

~ d s  G(e)= - - [ l n ( l + s ) ]  ~ 
S 

= ~ [K(s)y (5.23) 

ln(1 + s) K(s) (5.24) 
S 

is a bounded function of s on the unit interval. Now we can expand 
[K(s)] ~ = 1 + e In K(s) + (9(e 2) to find 

G(e)= s-7----~ + e s-V~_~lnK(s)+(9(e 2 ) (5.25) 

Now we may integrate the first term exactly. Moreover, the second 
integrand is well behaved, since, as s --* 0, [In K(s)]/s --* -1/2.  So 

1 1 G(e)=-~ + e ~o ds ln K(s) s + (9(e 2) (5.26) 

Equation (5.22) follows directly. 
Thus, if we consider I to be a real variable, then 

h(I) G(1) ~2 
lira = 2 - -  - 2 = h~ (5.27) 
Io l  ( I - -1 )1n2  ln2  61n 

We mention the above result for the following reason. The GMA gives a 
way for studying certain properties of the Farey shift, and the author 
speculates that results such as (2.11) may be recovered from studying the 
above limit. 

Large-/Limit. 
have 

In this section, we establish the result for large L We 

h = l n 2  (ln 2)2 ( ~ )  
i ~  + (9 (5.28) 

Our analytical answer has been verified numerically and been found to be 
in good agreement with the analytical form for I <  150. We begin by 
evaluating the integral in (5.21), G(I), by parts to yield 

G(I)AI_~{2(ln2)I+I Flds 1} +J0 )7 [in(1 + s ) ]  '+ (5.29) 



Multidimensional Continued Fraction 1487 

Thus, from (5.21) and (5.29) 

1 + H ( I +  1) h(I) = In 2 (5.30) 
1 + H(/)  

1 ds (ln(1 +s) )  p (5.31) 
7\  

Now the quantity H(p) approaches 0 uniformly as p approaches oo. Thus, 
we may write, to lowest order, 

h(I) = In 2 + In 2 [ H ( I +  1) - H(I ) ]  (5.32) 

Now the integral occurring in H is dominated by s near 1. To lowest order, 
then, we replace the quantity 1/(2s 2) by 1/(1 + s). Then the integral may be 
performed exactly, yielding 

,n2  
= +(9 (5.33) 

P 

Equation (5.28) follows immediately from the last two equations. 
The largest eigenvalue of the E-string is related to the entropy by (3~ 

~.1 = exp ( h ) (5.34) 

G(I) 
=exp ( (l) G(i_ l )) (5.35) 

The largest eigenvalue gives valuable information regarding the Diophan- 
tine properties of the Euclidean algorithm. A full discussion of all the eigen- 
values will be deferred to a later time. 

6. D I S C U S S I O N ,  C O N C L U S I O N  

In this paper we have investigated a multidimensional continued- 
fraction algorithm completely from a dynamical systems perspective. The 
attractive feature of this algorithm is the fact that we may explicitly 
calculate its statistical properties. In Section 5, we calculated the observable 
invariant measure and the KS entropy for the algorithm. Remarkably, we 
find that we can reduce the expression for the entropy (for the approxima- 
tion of any numbers of irrationals) to a single integral. This yields in 
turn an expression for the growth rate of denominators as discussed in 
Section 4. 
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In Figs. 5a and 5b we have plotted the entropy for arbitrary dimen- 
sion. Although we may discuss the entropy inherent in the approximation 
of a set of I irrationals only when I is an integer, it is still interesting to 
consider the functional dependence of the expression for the entropy [as 
given by (5.20) and (5.21)] as we continuously vary /. In Fig. 5a, as the 
number of irrationals increases, the entropy rises to an asymptotic value. In 
Fig. 5b, we have divided the entropy of the GMA shift by the number of 
integers which are unchanged at each application of the GMA procedure 
of Definition 2 (there are d -  2 = I -  1 of these integers). For large /, this 
curve shows a 1/1 dependence. As one lowers / ,  one sees that the entropy 
of the ordinary continued fraction lies on the analytic continuation of this 
curve to I =  1. This intriguing feature will be discussed at length at a later 
time. 

The entropy is directly related to the growth rate of denominators by 

21 _-- eh/(l+ 1) 

where h is the KS entropy, I is the number of irrationals to be 
approximated, and 2~ is the eigenvalue governing the growth rate of 
denominators. This quantity has never been calculated for any MCFA. Our 
results for the entropy for large I yield that 

21 =21/(1+ 1) (6.1) 

Since we should expect that the GMA shift is Bernoulli (the sequence 
of E 0 in the E-string is asymptotically as random as a coin toss), it may 
also be interesting to compare our results on the GMA shift to the recent 
results on the Lyapunov spectrum of products of random matrices. (21) 
Since we can explicitly write down the invariant measure for the GMA 
case, it might be interesting to compare our rigorous results for the eigen- 
values of the GMA shift with those found for the random matrix case 
(where the distribution is sometimes constructed somewhat artificially). 

In this paper we have simply examined the behavior of the determi- 
nant of the Jacobian. That is, the product of these eigenvalues. In a 
following work we provide a calculation and dynamical systems interpreta- 
tion for an important number-theoretic convergence exponent. An MCFA 
with best approximation properties must have a certain value for this 
exponent. Thus, this quantity enables us to quantify the quality of the 
approximation properties of any given MCFA, and specifically enables us 
to compare the approximation properties of the GMA and JP algorithms. 

Near the completion of this work, the work of Brun and Selmer (22) 
on essentially the same algorithm were made known to the author. No 
calculation for the eigenvalues has ever been given. 
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Fig. 5. Two entropy plots. (a) Plot of h(I)/ln 2 vs./, where i is the number of irrationals and 
h(1) is the analytic continuation of the entropy expression for GMA as a function of I. The 
function h(I)fln 2 approaches unity for I large. (b)Plot  of h(1)/[(I-1)ln 2] vs. I. As I 
approaches unity, the ordinate approaches hocF. As I grows large, the ordinate goes as 1/L 
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A P P E N D I X  A. PROOF OF P R O P O S I T I O N  2, 
S T A T E M E N T S  IN DEFIN IT ION 2 

In this Appendix we prove some of the assertions in Definition 2 and 
show how the GMA provides a proof for Proposition 2. None of these 
proofs involve sophisticated ideas. One must only do some careful 
bookkeeping. 

We first Show that the conditions imposed on the initial element of the 
GMA are passed on along to each iterate. That is, for every iteration of 
the GMA, the following hold [(A.1)-(A.6)]: 

in l # J n  1 (A.1) 

That makes the choice for j , ,  which is defined to be the number between 
1 and 3 inclusive not in the set {in 1, Jn 1} unique. Also, 

Now define k, as 

ine { i , - l , j ,  1} (A.2) 

kn6 { in_ l , j ,  1} and k , # i ,  

This is meaningful due to (A.2) [see also (A.4) below]. We also define 
k _ l =  3 for convenience. We also want to show 

j n = k ,  1 (A.3) 

in, J. ,  kn are 3 distinct integers (A.4) 

p(n).< p(n) (A.5) P!"),, ~< --k. "~ ~ :, 

p(n) >~ p ( . )  (A.6) p(n),~ + ~k. ~" ~ :. 

In the above, i n is defined by the GMA as the label for the uniquely 
smallest entry of the nth iterate of the GMA, or in 1 when there is no 
uniquely smallest element. Some of these statements are rather redundant 
[for example, (A.3) implies (A.1)]; however, it is convenient to set things 
up this way so that the proof for d ~> 4 is as similar as possible. The most 
important observation is (A.5) and (A.6), the sum of the two smallest 
elements is always larger than or equal to the greatest, for any iteration of 
the GMA. 

Proof by Induction n = 0 .  Since i _1=1 ,  j 1=2,  (A.1) is verified, 
and we have j o = 3 ,  the complement to the set { i - l , J - 1 } .  Since 
Jo = 3 = k 1, (A.3) is verified. 

We are given that p]O)< p~O)~<p~o). If p]O)< p(2O), then p~o) is the 
smallest element and io = 1 -- i 1: the smallest entry is in the first position. 
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If P]~176 then i o = i _  1= 1 according to GMA. Thus io= 1 = i _ 1 ,  
verifying (A.2), and we calculate ko=2 .  Thus, io = 1, jo = 3, ko=2 ,  and 

~(o) _< p(o) verifies Eq. (A.5). Also, due (A.4) is verified. The fact that p!O)<~,0 r)o - - -go  
to the given p!O),o - + p!o)j0 ~> *k0~176 verifying Eq. (A.6). 

n >~ 1. We assume (A.1)-(A.6) true for all 0 ~< r ~< n, we wish to show 
(A.1)-(A.6) hold for n +  1. Now (A.4) tells us that i , , j n ,  and k, are three 
distinct integers from 1 to 3 [so (A.1) is automatically implied for n + 1]. 
By the GMA prescription 

(p~+l, p~+l, p ~ + l ) =  (p~, pg, p~) E71 (a.7) 
lnJn 

yielding 

PI " + i): Pl? 
p(k.+ 1 ) =  p<.) 

kn 

p~.+ 1) ~-~ p ! . ) _  p! . )  
Jn in 

(A.8) 

We have subtracted one of the smallest entries [see (A.5)J from one of the 
largest entries. Since i ,  and j ,  are different, then we can uniquely define 
J,  + l = k ,  [-verifies (A.3)]. 

Case 1. Suppose 

Then 

2P!')<~,. P~') (A.9) 

p(n+X)=p!,,)<~i~ ,. p).(.)__ pi.(n)__p(n+l)__ J, ~ --k.P(n)--P(n+l)-- --k. (A. 10) 

We have used in order Eqs. (A.8), (A.9), (A.8), (A.5), and (A.8) to achieve 
respectively each relation in (A.10). Since p ~ + l )  is either the uniquely 
smallest element or is one of the smallest elements of the (n + 1)th iterate, 
the GMA ensures that i, +~= i,. So we have i n + l =  i,;  j ,  +1= k n. Since in 
and k, are different, then i, +1 and j ,  +1 are different. Thus we can uniquely 
define a k ,+ l  = j , .  Thus (A.2) and (A.4) are satisfied for Case 1. 

Case 2. Suppose 

2P!  ") > P" (A.11 ) In Jn 

Then i. + 1 = J . ,  J .  + 1 "~ k n ,  and k .  + 1 = i . ,  since 

p(n+ 1 ) j .  = P)~ P i . ( ' ) < P ! ' ) = P I ;  "-~ --k. = p(.+l)k~ (A.12) 

822/66/5-6-20 
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We have used (A.8), (A.11), (A.8), (A.5), and (A.8). This time i , + l = j n ,  
since p~n+~) is the smallest element. Thus, for Case 2, (A.2) and (A.4) are 

Jn 

also satisfied for n + 1. 
For  either Case 1 or Case 2, we can use the new labels and show 

~,,+ 1~ ~< p ~ +  1) ~< p!n+ 1) 
P i n + l  n + l  J n + l  

This verifies Eq. (A.5). Also, for either case 

ln + l - -  X kn + l - -  in "~- Jn a Jn ~ X kn - -  a kn Jn + l 

This verifies Eq. (A.6) for n + 1. 
We always have that the sum of the two smallest entries is larger than 

or equal to the greatest entry. 
The next thing we need to show is that the GMA terminates on 

(1, 1, 1). The initial (P~, P2, P3) are relatively prime by assumption. Since 
GMA subtracts a smallest element from a largest element, then the subse- 
quent (P~, P2, P3) can never all have the same common factor. Thus 
(a, a, a) can never occur (if a >  1) and so 0 never appears as an entry. 
Therefore in less than P~ + P2 + P3 steps a 1 will appear as an entry. There- 
after 1 will be subtracted from other entries until (1, 1, 1) is reached. 

Now we can show the existence of the matrix K of Proposition 2. 

Proof of Proposition 2. Define the function Sum, which adds the 
columns of a matrix and returns a vector: 

3 

( S u m A ) , -  ~ Ak, (a.13) 
k = l  

3 3 

(Sum AB),= ~ (AO)k l= ~. AkrBrl~- ((Sum A)B), (A.14) 
k = l  k , r = l  

We have shown that after a certain number of steps, the GMA terminates 
onto (1, 1, 1): 

E -1 -'- E7 -1 . (A.15) (1, 1, 1)= (P1, P2, P3)" ~J0 ,u ~Ju 

for some N>~ 1. Or 

(P1, P2, P3) = (1, 1, 1). Eiu_~jN_~-- E~0J0 

= (Sum I)K (A.16) 

= (Sum K) (A.17) 

Notice that 
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In the last equality, we have used (A.14). The matrix K of Proposition 2 
is probably not unique. The GMA is attractive since there is a nice 
geometrical interpretation. 

Similar proofs for the higher-dimensional GMA are given in 
Appendix B. 

A P P E N D I X  B. P R O O F  OF S T A T E M E N T S  IN 
D E F I N I T I O N  4 A N D  R E M A R K  2 

In this Appendix we prove some of the assertions made in Definition 4. 
None of these proofs involve sophisticated ideas. 

We first show that the conditions imposed on the initial element are 
passed along to each iterate of the GMA. Thus we wish to show that for 
all n >~0 the following hold [(B.1)-(B.6)]: 

theset  {in 1,...,in_d+2, Jn_l ..... jn_a+z} h a s d - l  distinctelements 

(B.1) 

That makes the choice for j~, which is defined to be the number between 
1 and d not in the above set, unique. Recall that i,, j ,  are the labels of E 0. 
The label in is defined to be the label for the uniquely smallest entry of the 
nth iterate of GMA, or in ~ when there is no uniquely smallest element. 
We also wish to show 

Now define kn as 

in~{i,,--1,jn 1} (B.2) 

kn~{in 1,Jn--l} and knr  n 

This is meaningful due to (B.2) [see also (B.4) below]. We initialize 
k_r = l + 2 for d -  3 ~ l < 0 to be consistent with the definitions for ip, jp for 
p negative. We also define k 2_ a-- d for convenience. We want to show 

j n = k n + 2 _ d  (B.3) 

in, jn, k, ,  k ,_  1 ..... kn_d+3 are d distinct integers (B.4) 

pl~)<<p(m<p(,) << ... <~p(n) <~p!~) (B.5) k n  ~ kn  1 kn  d + 3  Jn 

p!,) + p(n) >_ o(~) (B.6) 
tn - -  kn  ~,~ a Jn 

Proof by Induction. n = 0. There has been defined for negative 
labels 

(i t , j_~,k_t)=(1,  l + l , l + 2 )  for l = l , . . . , d - 2  
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This verifies (B.1) immediately for n = 0 .  We find j o=d=k2  a. This 
verifies (B.3). Now p~O) is at least as small as any p)O). If it is strictly 
smaller, then io = = 1 = i_1. If it is not strictly smaller, we conclude 
io = i_1 = 1 as well. Thus (B.2) holds. We have found 

io,ko,...,k3 d, Jo--1 ..... d 

are d distinct integers, verifying (B.4). Also, 

ploO) _< p(O) ~< p(O) ~< . . .  ~< .(o) .< p!O) 
" ~  ko - -  k 3 - d ~ YO 

plO) . p(O) p!O) 
- -  ko ~ JO 

due to the given (see Definition 4), verifying (B.5) and (B.6) for n = 0. 

n ~> 1. We assume (B.1)-(B.6) true for all r, with 0 ~< r ~< n. We wish 
then to show (B.1)-(B.6) hold for n + 1. Now, according to (B,1), we have 

the set {J.-1, . . . ,J . -a.2,  i. 1,..., i.-d+2} has d -  1 distinct elements 

Using (B.2) repeatedly yields 

{J.-l,..., J . - a + 2 ,  i . - a + 2 }  has d -  1 distinct elements 

And since j .  must  not  belong to the above set, 

{J.,J.-1,. . . ,J.-a+2, i. a+2} has d distinct elements 

(i) Suppose i~ d+3=i._d+2. Then k._a+3=j._d+2, due to the 
way the index k is defined, and 

{J. ,J .  l ..... J . - a + 2 ,  i.-a+3} has d distinct elements 

So 

{J. ,J .  ~, . . . , J . -d+3,  i.--d+3} has d - 1  distinct elements 

and is missing the element J.-a+2 = k.-a+3. From this last s tatement one 
uses repeated applications of (B.2), yielding 

{J ...... J . - a + 3 ,  i ...... i . - a + 3 }  has d -  1 distinct elements 

Therefore (B.1) is verified for n +  1, and we see for case (i) that  j . + l =  
J. a+2=k, a+3, verifying (B.3). 

(ii) In the other  case we have i._a+3=j._a+~, k._a+3=i._a+2, 
and 

{J ...... J.-a+3, i.-a+3, i. d+2} has dd i s t inc t  elements 

{J ...... J .  a+3, i._d+3} has d -  1 distinct elements 
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and is missing i. d+2=k,_a+3,  

{J~,...,J,-d+3, i,,..., i, d+3} has d - 1  distinct elements 

Again (B.1) is verified, and we have j , + l = i n _ d + z = k , _ d + 3 ,  verifying 
(B.3). 

Now by (B.4) 

i , , j , , k , , k ,  l , . . . ,k,  d+3 are ddistinct  integers (B.7) 

Since 

Case 1. 

then 

. . .  1 , ET~ 1, , Pd ) =  (P1,---, P'd) , , j ,  (pT+ -+ 

p(.+ l) = p!.) 
in tn 

p(.+ 1) = p!.) _ p!.) 
Jn Jn In 

p(n+ l) _ p ( n )  for 
k n  I - -  ~ k n  I 

Suppose 

Then 

O<<.l<d-3 

(B.8) 

(B.9) 

In deriving each relation in (B.11), we have used in order (B.9), (B.10), 
(B.9), and (B.6), and repeated applications of (B.4). By the way GM A is 
defined, if i, labels one of the smallest entries of P( '+ 11, then i , + 1 =  i,. 
Thus, by definition, k , + l = j , .  Now we already showed j , + l = k , _ a + 3 .  
Thus 

i , , j , , k , , k , _ l , . . . , k , _ a + 3 = ! / + l , k , + l , k , , . . . , k , _ a + 4 ,  J,+l (B.12) 

Using the new set of indices on the RHS of (B.12), one easily shows (B.5) 
for n + 1 using (B.11) and the last relation in (B.9). 

Case 2. Suppose 

2p!,) > p!n) (B.13) 
In Jn 

Then 

p( ,+l )  (,) (,) (,) + l )<m~)  P(') ~< ..- ~<P(') (B.14) =P); -Pi~ <Co =PL" -< Jn k n  d + 3  

p(.+l)=p!.)<<.p~;)i. ,. - P i.('l-- P)~.("+ 1) ~< P(k'.) < P('~)k. - 1 ~< " ' '  ~< P ( k ; ~ d + 3  (B.11) 

2P!",~ <~ P~') (B.10) 
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In deriving each relation in (B.14), we have used in order (B.9), (B.13), 
(B.9), and (B.4). Since j ,  labels the smallest entry of p(n+~, then i,+~=j,. 
Thus, by definition, k~ + 1 = i,. We showed j ,  + l = k ,_  a+ 3. Thus, 

j , , in, k,,,kn_l ..... kn_d+3=i,,+l,k,,+l,k ...... kn-a+4, jn+l (B.15) 

For  Case 2, with the indices on the RHS of (B.15), one shows (B.5) for 
n + 1 using (B.14) and the last relation in (B.9). 

For  either Case 1 or Case 2, 

(~+~) p(.+~)_p(~+~)+p)~+t)=p(.)>~p(m _p(~+~) =p(~+~) 
Pi~+~ @ k n + l  - -  in ~ J n  "~""~kn d + 3 - -  kn 0'+3 Yn+t 

verifying Eq. (B.6) for n + 1. 
The proofs that (a) 1, 1 ..... 1 is reached after a finite number of applica- 

tions of GMA and (b) Remark 2 following Proposition 2 holds run exactly 
the same as in the d =  3 case. See Appendix A. 

A P P E N D I X  C. PROOF OF T H E O R E M  1 (END OF SECTION 4) 

The results of Oseledec (2~ are indispensable to this section. Define 

SL=(KL~) T (C.I) 

KL = Perm EiL_~jL , " "  Eio#o (C.2) 

where the E's are elementary matrices and Perm is a permutation matrix 
(see Section 4). Now from Section 4 

x~L)= (SL)jkX~ ~ (C.3) 

where X~ L)<~Y(L)~*j+I, etc., is the Lth GMA iterate after rearranging the 
GMA iterates from smallest to largest [see Section4, (4.1)-(4.3)]. We 
define also the following matrix: 

o(xIL)/x~) )) 
(TL),j-- O(X~m/x~aO)) (C.4) 

where the partial derivative is taken holding all X~k ~ with k e j  fixed. One 
sees that this is precisely the same as 

a(xl~) (c.5) (TL)~- ~(x~O~ ) 

where 

(x~ ~ ..... x ~ L ) l )  = T o M .  . . . . .  T o M , , ( x ,  ..... x ~  ~) 
L times 

(C.6) 
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and 

xi  = X j X d  (C.7) 

That is, the set ~'IY(L)/y(L)/~'d '"" X(d L)- 1/X(d L) is the Lth iterate of the GMA shift 
beginning from y ( o ) / y ( o )  x(dO) / y ( o )  ~" 1 :'* d '"" 1 / "  d " Studying T L will yield the Oseledec 
eigenvalues of the GMA shift, whereas studying SL will yield the eigen- 
values of the GMA Euclidean algorithm. We want to understand how these 
eigenvalues are related. By straightforward calculation one finds 

=--x" (exl L) --,v<L/ ~--,:v<L>~ 

for I <<.i,j<~d-I. We can rewrite (C.8) using (C.3), 

X d  ( (S, ) ,  _ X ' "  (S,)•) 

A similar calculation yields for TL 1 

Xca L~ / X ~~ ) 
(TL1)rs = ~ [ ( S ;1 )~"  - X(dO----C-5 ~ ) ( S L ' ) d ,  

]Define now a matrix VL by 

x~ ~) 
Ti  I - X2 ~ V; 

Using (C.1), (C.2), (C.10), and (C.11), we find 

(VL)rs T --1 Xs = = ( S ~ ) , .  (vL)s, ( S L ) s r  --1 

r Xs  r 
= (KL)sr-- ~d  (K L)dr 

= (KL ) r s  Xs X s 
Xd ~ (KL)rd 

Define also 

(c.8) 

(C.9) 

(c.lo) 

( c a l )  

(c.~2) 

(c.~3) 

(C.14) 

Y j ( m ) - - x ~ L - - m )  -- (C.15) 
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So we have 

y(L)= (Kr) y(O) (C.16) 

r(O) V~ (C.17) T L  1 -- y~L) 

y~L) 
VL = (KL), -- ~aL) (KL),d, l<~r,s<~d-1 (C.18) 

Lemma I. If v,,..., va , are the Oseledec eigenvalues of VL, then 
the Oseledec eigenvalues of TL are given by (fl~l/l)d 1 ..... 21/U1) , where fl'l is 
the growth rate of the denominators of the GMA Euclidean algorithm. 

Proof. 
lim t 1/2L -- 1T~ I r) - 1/2L (TLTL)  = (T L (C.19) 

L~oo  
( y(dO,~ 1/L 

= lim lim (v rvL)  -1/2L (C.20) 

= lira (y~L))I/L lim [(V[VL) 1/zL] 1 (C.21) 

The eigenvalues of the matrix inside parentheses on the RHS are by 
assumption v~ ..... va 2. So the eigenvalues of the inverse of this matrix are 
1/vj. The first parentheses is simply 21, the growth rate of denominators. 
Remember that the X's are decreasing (being stripped) and the Y's are 
increasing. This establishes the result of Lemma 1. I 

Let us next define a matrix WL which has a similar definition to VL, 
but is a d x d matrix, 

y~L) 
(WL)~ = (KL)r~- -~aL) (KL),a (C.22) 

for 1 <~r, s<~d. 

kemrna  2. The Oseledec eigenvalues of W L are given by Vl,..., va_ 2, 
0, where the v~ are the Oseledec eigenvalues of VL. 

Proof. Clearly 0 is an eigenvalue of WL, since WL has a column of 
zeros, (Wr)ra = 0. The matrix WL may be written 

[I(d 1)• 1 ) O l [ V L  01] WL = L _y)O) OIL 0 (C.23) 

where for convenience we have defined 

y~O)= -JV(~176 (C.24) 
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We have introduced block matrix notation in (C.23). For example, the djth 
element of the first matrix on the RHS of (C.23) is yjO) f o r j ~ < d -  1. The 
upper ( d -  1) x ( d -  1) block of that matrix has a one on the diagonal and 
zeros everywhere else. 

Now the Oseledec eigenvalues of a matrix are the same as the 
Oseledec eigenvalues of its transpose. Thus, let us investigate 

W V ~lT=fI(d-1)• Oil vLvr ~ *'• " -YS~ (C.25) 
"~ L _ySO) OJL o i lL o o J 

Now we can go to a basis where VLV r is diagonal via a rotation. 
Thus, 

01] [~o ~ . . o  [v~176 ~176 o~ ~:~o [~:o] i~.2~, 
where the R L a r e  ( d -  1)x ( d -  1) rotation matrices. That VL has Oseledec 
eigenvalues is a given of Lemma 2. Thus, 

l im  (Z)I2L)) 1/2L + Vl, etc. (C.27) 
L ~  

And using (C.25) and (C.26), 

It ~ o,]~[~o: Ol] 
[, ~] 0 

= " L ~ o~ 
Note that each vl 2L) and ej is real. One next calculates the eigenvalues of 
the RHS. Whereas this is very tedious, it is completely straightforward. We 
demonstrate this for a particular case; the proof for the general case is 
exactly the same. Suppose we wish to calculate the eigenvalues of 

1 0 o71-~ ~ o 
0 1 0 0 m22 L 0 0 1 

a b O 0 0 1 O 0  

(C.29) 
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where a, b are real. A straightforward 
el, e2, e3 yields 

e I = 0  

m~C(1 + a z) + m~L(1 + b 2) 
6 ' 2 ' 3  ~ 2 

calculation for the eigenvalues 

(c.3o) 

I (  - -m2L( l+b2))  2 2-2 2L 2c-71/2 
--+ m~L(l+a2) 2 2 . + a o m  I m2 j 

If m 1 > m 2 ,  then 

e~22L) ~_ m~L(1 + a2), 
1 + a 2 + b  2 e~2L) __ 2L 

1 + b 2 m2 

yielding ei=limL~oo(el2L))l /2L=(O, ml ,  m2) as the eigenvalues. If m I = 
m2 = m, then 

{ a2+b2E(a2 2)2 11'2) e ( ~ ) = m  2L 1+------~- _ ~ +a2b 2 (C.31) 

Obviously e2, e3 are real. Now 

14 
a2 + b2 I ( ~ ) 2 2  + a2b z ]1/2 

= l - t  
a 2 + b 2 [ ( ~ ) 2 - a 2 b 2 1 1 / 2  

>/1 q 2 = 1 (C.32)  

Thus, both ~ ~2,3 are proportional to m zL. [-The above calculation for (C.32) 
was to show that the proportionality constant cannot be zero.] So even in 
the special case, we have e2 = m2, e3 = m3, as expected. | 

What we next show is that the eigenvalues of WL are 22,. ,  2a, 0, 
where the 2 i are the eigenvalues of the E-string. That would mean that the 
Oseledec eigenvalues of VL a r e  2 2 . . . . .  )~d via Lemma 2 and that the Oseledec 
eigenvalues of Tr are 21/2d,..., 2t/22, via Lemma 1. That is the result that 
establishes Theorem 1 of Section 4. 

From (C.22) and (C.16), one can write 

1 d 
(WL)rs-  y(d L) E (KrsKad- KrdKas) Y(aO) (C.33) 
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Suppose KL is similar to a diagonal matrix: 

o ~176 1 KL=P 0 " .  

o o ,~L~ 

p 1 (C.34) 

for some matrix P, where 

lim (I;IL)I),/L = 2,; i = 1,..., d (C.35) 
L~oo 

are the Oseledec eigenvalues of the E-string. Let us put W c also in this 
basis. Then we find 

"'. - t  __ Ftq}~q )~t ] 
( p -  1WL P ~ _ _  Fu  2]cl J u 1 Fll 2~ L) 6q, (C.36) 

El 12 It) 
~- r(dL ) Cq, (C.37) 

where we have defined 

d 
Ftq= E Y~~ (C.38)  

a = l  

and we have defined the matrix C implicitly in going from (C.36) to (C.37). 

Note that F t q f  qt = F t t f  qq. 
Thus, we must calculate the eigenvalues of Cq,. Now, 

Cq=l , t  =1~-- i FiF---~uul )~(L) 
u=2 

C q _  ~__ _2(c ) F~I 

- 1.,el ' Fu  (C.39) 

Cqv~ l t-- = --)'(L) Flq 
, -- 1 ~q El 1 

_ ~  ~(L)+ 6q,21L) 2~ L) F. .  ;(L) 
C q c - l , t r  ~ L )  F l l  --t )~]L) Fl l  

u=2 

Let us break C up into two pieces 

C = C ~  1 (C.40) 
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We put into C 1 those terms which are down by an order of 2~L)/2~ L). Thus, 
let 

d 
c o = ~ ~u~;~L~ 

q = 1, /= 1 u~2 F .  

C o = _21L) Ftl 
q=  1,t;~ 1 F11 

C O _ _~(L)  Flq 
q ~ l , t = l  - -  "~q F11 

C O - '~  ~(/~) (C.41) q~- l,tr i -- Vqt'~t 

C l q _ 1 , , _ 1 = 0  

Ca1= 1,~.1 = 0  

Clqv~l , t_l  = 0  

( C~ =21 L) aq, . ~  _ ~ .  2q 
e l , , e l  2~L) F .  2~L) Ell ] u = 2  

We will assume that 2~ > 1 >~ 42/> . . .  ~> 2 d. That is, the parallelograms of 
Section 3 are getting long (in the eigendirection of the eigenvalue 2~) and 
thin (in every other eigendirection). Our assumption is obvious the way 
GMA is defined and is consistent with all our numerical results, although 
strictly speaking we have not supplied a proof of this assertion. Considera- 
tion of (C.41) makes it clear that C ~ has a vanishing effect on the spectrum 
as k-~ oo. 

We will need to show that eigenvalues of C o (and hence C) are 
42 ..... )~d. A straightforward calculation yields 

1 de t (C0_ eI) = 1 4 7 -  ~l �9 l - (c.42) 

If the 2~ of (C.35) are all different, then it is easy to solve for roots for 
on the RHS of (C.42), 

~ = ~ b = 2 ( L +  ) , E Fqq Fqq; l<~b<<.d -1  (C.43) 
q = l  q 1 

Thus, the Oseledec eigenvalues of C o and C are 42,..., 2d, 0. And the 
Oseledec eigenvalues of W are 42 ..... ha, 0, yielding the Oseledec eigen- 
values for V as 22 ..... ha. Thus, the Oseledec eigenvalues for T are 
2t /2d ..... 21/22 . 
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In the case where some of the 2~ are equal, it is not easy to solve 
explicitly for the roots as in (C.43). The conclusion, however, that the 
Oseledec eigenvalues of C are 2 2,,.., '~d, 0 remains the same. (That is, if two 
roots, say 23 and 24,  a r e  equal, then there will be two roots for e with 
]cq2~ L)] a number which always stays of order unity as L ~ oo.) The rest of 
the argument runs parallel to the above. Theorem 1 of Section 4 is proved. 

G L O S S A R Y  

[.] 
h 
I 
d 
j p  

5# 
Eij 
E-string 
vertices V~ 

mediants M~k 
focus 
Euclidean 

algorithm 
OCF 
GMA 
JP 
MCFA 
KS entropy 
TOCF 
FS 
(a,..., z) 

dU(x) 
p(x) 

0"1,..., G d _  1 

set of positive integers 
Gauss integer symbol (Section 2) 
entropy 
# of irrationals to be simultaneously approximated 
dimension of the vector of convergents (equal to I +  1) 
unit hypercube in p dimensions 
support of the invariant measure (see Section 5) 
elementary matrix, with klth component 6~l + 6ik6s~ 
product of elementary matrices given by the algorithm 
corners of the elementary simplex adjoined to the origin 

(Section 3) 
a direct sum of any two of the vertices (Section 3) 
sum of all the vertices (Section 3) 
reverse of the E-string procedure (see Section 2) 

ordinary continued-fraction algorithm 
generalized mediant algorithm: the subject of this paper 
Jacobi-Perron: the most well-studied MCFA 
Multidimensional continued-fraction algorithm 
Kolmogorov-Sinai entropy 
ordinary continued-fraction shift map 
Farey shift map 
irrational vector with I components; each element is an 

irrational 
invariant measure 
invariant density [ = dl~(x)/dx] 
the d Oseledec eigenvalues of the E-string (see Section 4) 

ordered 21 > 1 > 22 ~> 23 >/ " ' "  

Oseledec eigenvalues of the shift map (Section 4) ordered 
greatest to smallest; all the a i>  1, and ai= 21/2a_i+ 1 

In al ..... In aa_ 1Oseledec exponents of the shift map (Section 4) 
Perm a permutation matrix (Section 4). 
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